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History of variable exponent spaces

History of variable exponent spaces

Variable exponent Lebesgue spaces appeared in the literature for the first
time already in 1931 by W. Orlicz.

W. Orlicz ; Uber konjugierte Exponentenfolgen. Studia Math., 3 :
200-211, 1931.

In the paper of Orlicz, the following question is considered : Let (pi) (with
pi > 1) and (xi) be a sequences of real numbers such that

∑
i

xpi
i

converges. What are the necessary and sufficient conditions on (yi) for∑
i xiyi to converge?
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History of variable exponent spaces

It turns out that the answer is that
∑

i

(λyi)
p
′
i should converge for some λ > 0

and p
′

i =
pi

pi−1 which is essentially Holder’s inequality in the space lp(.).
Orlicz also considered the variable exponent function space Lp(.) on the real
line, and proved the Holder inequality in the setting. However, after this one
paper, Orlicz abandoned the study of variable exponent space, to concentrate
on the theory of the function space that now bear his name.

J. Musielak and W. Orlicz. On modular spaces. Studia Math, 18 : 49-65,
1959.
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History of variable exponent spaces

Modular spaces

In the theory of Orlicz spaces, one defines the space Lφ to consist of those
measurable functions

u : Ω → R

for which
ρ(λu) =

∫
Ω

φ(λ|u(x)|)dx < ∞,

for some λ > 0.
φ has to satisfy certain conditions and Ω ⊂ RN, N ≥ 1.
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History of variable exponent spaces

Abstracting certain central properties of ρ, we are led to a more general class of
so-called modular functions spaces which were first systematically studied by
Nakano

H. Nakano. Modulared semi-ordered linear spaces. Maruzen Co. Ltd.,
Tokyo, 1950.

H. Nakano. Toplogy of linear topological spaces. Maruzen Co. Ltd., Tokyo,
1951.

In the appendix of the book of Nakano (1950), he mentioned explicitly variable
exponent Lebesgue spaces as an example of the more general spaces he
considers.

7 / 78



PDEs with variable exponent

History of variable exponent spaces

Modular functions
Following the work of Nakano, modular spaces were investigated by several
people, most importantly by groups at Saporo (Japan), Voronezh (USSR) and
Leifen (Netherlands). Somewhat later, a more explicit version of these spaces,
modular function spaces, were investigated by Polish mathematicians, for
instance, H. Hudzik, H. Kaminska and J. Musielak.
For a comprehensive presentation of modular function spaces, see the
monograph by J. Musielak.

J. Musielak. Orlicz spaces and modular spaces, volume 1034 of Lecture
Notes in Mathematics. Springer-Verlag, berlin, 1983.
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History of variable exponent spaces

Variable exponent Lebesgue spaces have been independently developed by
Russian researchers, notably I. Sharapudinov. These investigations originated
in a paper by I. Tsenov from 1961.

I. Tsenov. Generalization of the problem of best approximation of a function
in the space ls. Uch. Zap. Dagestan Gos. Univ., 7 :25-37, 1961.

and, were briefly touched on by V. Portnov.

V. R. Portnov. Certain properties of the Orlicz spaces generated by the
functions M(x,w). Dokl. Akad. nauk SSSR, 170 : 1269-1272, 1966

V. R. Portnov. On the theory of Orlicz spaces which are genrated by
variable N-functions. Dokl. Akad. Nauk SSSR, 175 : 296-299, 1967.
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History of variable exponent spaces

Luxemburg norm

The question raised by I. Tsenov and solved by I. Sharapudinov is the
minimization of ∫ b

a
|u(x)− v(x)|p(x)dx,

where u is a fixed function and v varies over a finite dimensional subspace of
Lp(.)([a, b]).
I. Sharapudinov also introduced the Luxemburg norm for the Lebesgue Space
and showed that this space is reflexive if the exponent satisfies
1 < p− ≤ p+ < ∞.
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I.I. Sharapudinov. On the topology of the space Lp(t)([0, 1]). Math. Notes, 26
(3-4) : 796-806, 1976.

I.I. Sharapudinov. Approximation of functions in the metric of the space
Lp(t)([a, b]) and quadrature formulas. (Russian). In constructive function
theory’81 (Varna, 1981), page 189-193. Publ. House Bulgar. Acad. Sci.,
Sofia, 1983.

I.I. Sharapudinov. The basis property of the Haar system in the space
Lp(t)([0, 1]) and the principle of localization in the mean, (Russian). Math.
Sb. (N.S.), 130 (172) : 275-283, 286, 1986.
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History of variable exponent spaces

In the mid-80’, V. Zhikov started a new line of investigation, that was th become
intimately related to the study of variable exponent spaces, considering
variational integrals with non-standard growth conditions. Another early PDE
paper is done by O. Kovacik, but this paper appears to have had little influence
on later developments.

V.V. Zhikov. Averaging of functionals of the calculus of variations and
elasticity theory. Math. USSR-Izv, 29 : 675-710, 877, 1987.

O. Kovacik. Parabolic equations in generalized Sobolev spaces Wk,p(x).
Fasc. Math., 25 : 87-94, 1995.
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Major step for variable exponent spaces

The next major step in the investigation of variable exponent spaces was the
paper by O. Kovacik and J. Rakosnik in the 90’s.

O. Kovacik and J. Rakosnik. On the spaces Lp(x) and W1,p(x). Czechoslovak
Math J., 41(116) : 592-618, 1991.

This paper established many of the basic properties of Lebesgue and Sobolev
spaces with variable exponent in Rn.
During the following ten years, there were many scattered efforts to understand
these spaces.
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At the turn of the millennium, various developments lead to the start of a period
of systematic intense study of variable exponent spaces : First, the connection
was made between variable exponent spaces and variational integrals with
non-standard growth and coercivity condition. It was also observed that these
non-standard variational problems are related to modeling of so called
electrorheological fluids. Later on, other applications have emerged in
thermorheological fluids and image processing.

E. Acerbi and G. Mingione ; Regularity results for a class of functionals with
non-standard growth. Arch. Ration. Mech. Anal., 156 : 121-140, 2001.

V.V. Zhikov ; On Lavrentiev’s phenomenon. Rus. J. Math. Phys, 3 : 249-269,
1995.

K.R. Rajagopal and M. Ruzicka ; Mathematical modeling of
electrorheological materials. Const. Mech. and Thermodynamics, 13 :
59-78, 2001.
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K.R. Rajagopal and M. Ruzicka ; On the modeling of electrorheological
materials.

M. Ruzicka ; Modeling and mathematical theory, volume 1748 of lecture
notes in mathematics. Springer-verlag, Berlin, 2000.

Variable exponent functionals in image restoration. Applied Mathematics
and Computation, 216(3) : 870-882, 2010.

R. Aboulaich, D. Meskine and A ; Souissi. New diffusion models in image
processing. Comput. Math. Appl, 56 : 874-882, 2008.

S. Antontsev and J. F. Rodrigues. On stationary thermo-rheological viscous
flows. Ann. Univ. Ferrara. Sez. VII. Sci. Mat., 52(1) : 19-36, 2006.

E. M. Bollt, R. Chartrand, S. Esedoglu, P. Schultz and K.R. Vixie.
Graduated adaptative image denoising : local compromise between total
variation and isotropic diffusion. Adv. Comput. Math, 31 (1-3) : 61-85, 2009.

Y. Chen, S. Levine and M. Rao. Variable exponent linear growth functionals
in image restaoration. SIAM J. Appl. Math., 66 : 1383-1406, 2006.
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History of variable exponent spaces

Even more important thing is the fact that the “correct” condition for regularity of
variable exponents was found. This condition, which we call log-Hölder
continuity, was used by L. Diening to show that the maximal operator is
bounded on Lp(.)(Ω when Ω is bounded. He also showed that the boundedness
holds in Lp(.)(RN) if the exponent is constant outside a compact set. The case of
unbounded domains was soon improved by D. Cruz-Uribe, A. Fiorenta and C.
Neugebauer and, independently, A ; Nekvinda, so that a decay condition
replaces the constancy at infinity. The boundedness of the maximal operator
open us the door for treating a plethora of other operators. For instance one can
then consider the Riesz potential operator and thus prove Sobolev embeddings.
Such results indeed followed in quick succession starting from the middle of
2000. The boundedness of the maximal operator and other operators is a subtle
question and improvements of these initial results have been made since then
in many papers.
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History of variable exponent spaces

L. Diening. Maximal function on generalized Lebesgue spaces Lp(.). Math.
Inequal. Appl, 7 : 245-253, 2004.

D. Cruze-Uribe, A. Fiorenza and C. Neugebauer. The maximal function on
variable LP spaces. Ann. Acad. Sci. Fenn. Math., 28 : 223-238 ; 29(2004),
247-249, 2003.

A. Nekvinda. Maximal operator on variable Lebesgue spaces for almost
monotone radial exponent. J. Math. Anal. Appl., 337 :1345-1365, 2008.
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Lebesgue spaces with variable exponent

The Lebesgue space Φ− function

Definition 1

Let (A,
∑

, µ) be a σ-finite, complete measure space. We define P(A, µ) to be
the set of all measurable functions p : A → [1,∞]. Functions p ∈ P(A, µ) are
called variable exponents on A.
We define p− := essinfy∈Ap(y) and p+ := esssupy∈Ap(y).
If p+ < ∞, then we call p a bounded variable exponent.
If p ∈ P(A, µ), then we define p′ ∈ P(A, µ) by 1

p(y) +
1

p′(y) = 1, for all y ∈ A,
where 1

∞ := 0.
The function p′ is called the dual (or conjugate) variable exponent of p. In the
special case where µ is the n-dimensional Lebesgue measure and Ω is an open
subset of RN, we denote P(Ω) := P(Ω, µ).
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Lebesgue spaces with variable exponent

Basics properties

Definition 2

The Lebesgue space with variable exponent Lp(.)(Ω) is the set of all measurable
functions u : Ω → R for which the convex modular

ρp(.)(u) :=
∫
Ω

|u|p(x)dx

is finite.

Definition 3

If the exponent is bounded (if p+ < ∞), then the expression
|u|p(.) := inf

{
λ > 0/ρp(.)(

u
λ ) ≤ 1

}
define a norm in Lp(.)(Ω), called the

Luxembourg norm.
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Lebesgue spaces with variable exponent

A function xM := inf
{
λ > 0/

∫
Ω

M( x(t)
λ )dx ≤ 1

}
, where M(u) is an even function

that increases for positive u, lim
u→0

M(u)
u

= lim
u→0

u
M(u)

= 0, M(u) > 0 for u > 0 and

G is a bounded set in RN, is called the Luxemburg norm because this norm
where studied by W. A. J. Luxemburg in 1955.

W. A. J. Luxemburg. Banach function spaces. T. U. Delft (1955), Thesis.

Proposition 3.1

The space (Lp(.)(Ω), |.|p(.)) is a separable Banach space. Moreover, if
1 < p− ≤ p+ < ∞, then Lp(.)(Ω) is uniformly convex, hence reflexive, and its
dual space is isomorphic to Lp′(.)(Ω), where 1

p(x) +
1

p′(x) = 1.
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Lebesgue spaces with variable exponent

Hölder type inequality

Proposition 3.2

|
∫
Ω

uvdx| ≤ (
1

p−
+

1
(p′)−

)|u|p(.)|v|p′(.),

for all u ∈ Lp(.)(Ω) and v ∈ Lp′(.)(Ω).
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Lebesgue spaces with variable exponent

Relationship between Luxemburg norm and modular
function

An important role in manipulating the Lebesgue spaces with variable exponents
is played by the modular ρp(.) of the space Lp(.)(Ω).

Lemma 4

If un, u ∈ Lp(.)(Ω) and p+ < ∞, then the following properties hold :

(i)|u|p(.) > 1 ⇒ |u|p
−

p(.) ≤ ρp(.)(u) ≤ |u|p
+

p(.);

(ii)|u|p(.) < 1 ⇒ |u|p
+

p(.) ≤ ρp(.)(u) ≤ |u|p
−

p(.);

(iii)|u|p(.) < 1(resp = 1;> 1) ⇔ ρp(.)(u) < 1(resp = 1;> 1);

(iv)|un|p(.) → 0(resp → ∞) ⇔ ρp(.)(un) → 0(resp → ∞);

(v)ρp(.)(
u

|u|p(.)
) = 1.
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Lebesgue spaces with variable exponent

Embeddings results

It is well known from the theory of Classical Lebesgue spaces (Lebesgue
spaces with constant exponent) that Lp(Ω) is a subspace of Lq(Ω) with
p, q ∈ [1,∞] if and only if p ≥ q and µ(Ω) < ∞. This suggests that a similar
condition characterizes the embedding Lp(.)(Ω) ↪→ Lq(.)(Ω), for p, q ∈ P(Ω).
Naturally, this question is closely related with the H’́older type inequality.
Recall that the norm of the embedding Lp(.)(Ω) ↪→ Lq(.)(Ω) is the smallest
constant K > 0 for which ∥f∥p(.) ≤ K∥f∥q(.).
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Embeddings results

Theorem 5

Let p, q ∈ P(Ω). Define the exponent r ∈ P(Ω) by 1
r(y) := max

{
1

q(y)
− 1

p(y)
, 0
}

for ally ∈ Ω. If q ≤ p, µ-almost everywhere and 1 ∈ Lr(.)(Ω), then
Lp(.)(Ω) ↪→ Lq(.)(Ω) with norm at most 2∥1∥Lr(.)(Ω).

Theorem 6

Let p, q, r ∈ P(Zn), with 1
r(x) := max

{
1

q(x)
− 1

p(x)
, 0
}

and 1 ∈ Lr(.)(Zn). Then

lp(.)(Zn) ↪→ Lq(.)(Zn) .

Theorem 7

If p ∈ P(Ω) with p < ∞, then C∞
0 (Ω) is dense in Lp(.)(Ω).
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Sobolev spaces with variable expoents

The Sobolev space is a vector space of functions with weak derivatives. One
motivation os studying these spaces is that solutions of PDEs belong naturally
to Sobolev spaces.
Let Ω ⊂ RN be an open set. We start by recalling the definition of weak
derivatives.

Definition 8

Assume that u ∈ L1
loc(Ω). Let α := (α1, ..., αN) ∈ NN be a multi-index. If there

exists g ∈ L1
loc(Ω) such that∫

Ω

u
∂α1+...+αNΨ

∂α1 x1...∂αN xN
dx = (−1)α1+...+αN

∫
Ω

Ψgdx,

for all Ψ ∈ C∞
0 (Ω), then g is called a weak partial derivative of u with respect to

α. The function g is the denoted by ∂αu or by ∂α1+...+αN u
∂α1 x1...∂

αN . Moreover, we write u to
denote the weak gradient ( ∂u

∂x1
, ..., ∂u

∂xN
) of u and we write short ∂ju for ∂u

∂xj
with

j = 1, ...,N.. More generally, we write ku to denote the tensor with entries ∂αu,
|u| = k.
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Sobolev spaces with variable expoents

Definition 9

The function u ∈ Lp(.)(Ω) belongs to the space Wk,p(.)(Ω), where k ∈ N and
p ∈ P(Ω), if its weak partial derivatives ∂αu with |α| ≤ k exist and belongs to
Lp(.)(Ω).

Definition 10

We define the semimodular on Wk,p(.)(Ω) by

ρk,p(.)(u) :=
∑

0≤|α|≤k

ρp(.)(∂αu),

which induces a norm by

∥u∥k,p(.) := inf
{
λ > 0/ρk,p(.)(

u
λ
) ≤ 1

}
.

For k ∈ N, the space Wk,p(.)(Ω) is called Sobolev space with variable exponent
and its elements are called Sobolev functions.
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Sobolev spaces with variable expoents

Definition 11

A function u belongs to Wk,p(.)
loc (Ω) if u ∈ Wk,p(.)(U) for every compact set U ⊂ Ω.

We equip Wk,p(.)
loc (Ω) with the initial topology induced by the embeddings

Wk,p(.)
loc (Ω) ↪→ Wk,p(.)(U), for all compact set U ∈ Ω

Theorem 12

Let p ∈ P(Ω). The space Wk,p(.)(Ω) is a Banach space, which is separable if p is
bounded, and reflexive and uniformly convex if 1 < p− ≤ p+ < ∞.

Lemma 13

Let p ∈ P(Ω). Then, Wk,p(.)(Ω) ↪→ Wk,p−

loc (Ω). If |Ω| < ∞, then
Wk,p(.)(Ω) ↪→ Wk,p−(Ω).
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Sobolev spaces with variable expoents

We now defines Sobolev spaces with zero boundary values and given basics
properties for them.

Definition 14

Let p ∈ P(Ω) and k ∈ N. The Sobolev space Wk,p(.)
0 (Ω) with zéro boundary

values is the closure of the set of Wk,p(.)(Ω)-functions with compact support.

Theorem 15

Let p ∈ P(Ω). The space Wk,p(.)
0 (Ω) is a Banach space, which is separable if p is

bounded, and reflexive and uniformly convex if 1 < p− ≤ p+ < ∞.
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Sobolev spaces with variable expoents

Particular case where k = 1

For a measurable function u :→ R, we introduce the following notation :

ρ1,p(.)(u) =
∫
Ω

|u|p(x)dx +

∫
Ω

|∇u|p(x)dx.

Then we have the following lemma.

Lemma 16

If u ∈ Wk,p(.)(Ω) the the following properties hold :

(i)|u|1,p(.) > 1 ⇒ |u|p
−

1,p(.) ≤ ρ1,p(.)(u) ≤ |u|p
+

1,p(.);

(ii)|u|1,p(.) < 1 ⇒ |u|p
+

1,p(.) ≤ ρ1,p(.)(u) ≤ |u|p
−

1,p(.);

(iii)|u|1,p(.) < 1(resp = 1;> 1) ⇔ ρ1,p(.)(u) < 1(resp = 1;> 1);

(iv)|un|1,p(.) → 0(resp → ∞) ⇔ ρ1,p(.)(un) → 0(resp → ∞);
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Sobolev-Poincaré inequalities and embeddings

In this part, we assume that the exponent p is log-Hölder continuous with
1 ≤ p− ≤ p+ < n.

Definition 17
We say that a function α : Ω → R is locally log-Hölder continuous on Ω if there
exists C1>0 such that

|α(x)− α(y)| ≤ C1

log(e + 1
|x−y| )

,

for all x, y ∈ Ω.
We say that α satisfies the log-Hölder decay condition if there exist α∞ and a
constant C2 such that

|α(x)− α∞| ≤ C2

log(e + |x|)
,

for all x ∈ Ω.
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Sobolev spaces with variable expoents

We say that α is globally log-Hölder continuous in Ω if it is locally log-Hólder
continuous and satisfies the log-Hölder decay condition.
The constants C1 and C2 are called the local log-Hölder constant and the
log-Hölder decay constant, respectively. The maximum max {C1,C2} is just
called the log-Hölder constant of α.

Definition 18
We define the following class of variable exponents

P log(Ω) :=

{
p ∈ P(Ω)/

1
p

is globally log-Hölder continuous
}
.

By clog(p) or clog, we denote the log-Hölder constant of 1
p .
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Sobolev spaces with variable expoents

Definition 19

A bounded domain Ω ⊂ RN is called an α-John domain, α > 0, if there exists
x0 ∈ Ω (the John center) such that each point in Ω can be joined to x0 by a
rectifiable path γ (The John path) parametrized by arc-length such that
B(γ(t), 1

α t) ⊂ Ω, for all t ∈ [0, l(γ)], where l(γ) is the length of γ. The ball
B(x0,

1
2αdiam(Ω)) is called the John ball.

Definition 20
We define the Sobolev conjugate exponent point-wise, i.e.,

p⋆(x) :=
np(x)

n − p(x)
,

when p(x) < n
and p⋆(x) = ∞, otherwise.
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Sobolev spaces with variable expoents

Let p ∈ P log(Ω) satisfy 1 ≤ p− ≤ p+ < n.
(a) For every u ∈ W1,p(.)

0 (Ω),

∥u∥Lp⋆(.)(Ω) ≤ c∥∇u∥Lp(.)(Ω),

for u ∈ W1,p(.)(Ω). The constant c depends only on the dimension n, α, clog(p)
and p+.
(b) If Ω is a bounded α-John domain, then

∥u − ⟨u⟩Ω∥Lp⋆(.)(Ω) ≤ ∥∇u∥Lp(.)(Ω),

for u ∈ W1,p(.)(Ω). The constant c depends only on the dimension n, α, clog(p)
and p+.
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Sobolev spaces with variable expoents

Corollary 21

Let Ω be a bounded α-John domain and let p ∈ P log(Ω). Let q ∈ P(Ω) be
bounded and assume that q ≤ p⋆. Then

W1,p(.)(Ω) ↪→ Lq(.)(Ω),

where the embedding constant depends only on α, |Ω|, n, clog(p) and q+.

Theorem 22

Let Ω ⊂ Rn be a bounded domain and let p ∈ P log(Ω). Then,

W1,p(.)
0 (Ω) ↪→↪→ Lp(.)(Ω) (compact embedding).
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Sobolev spaces with variable expoents

Corollary 23

Let Ω be a bounded domain and let p ∈ P log(Ω) satisfy p+ < n. Then

W1,p(.)
0 (Ω) ↪→↪→ Lp(.)⋆−ϵ(Ω)

, for every ϵ ∈ (0,n′), where n′ is such that 1
n + 1

n′ = 1.
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Applications to PDEs

Motivation
1- Mathematical motivation

The first motivation of using Lebesgue and Sobolev spaces with variable
exponent to solve PDEs was the following (done by Kovacik and Rakosnik) :
Consider the nonlinear Dirichlet boundary value problem.∑

|α|≤k

(−1)|α|Dαaα(x, δku) = f on Ω, (5.1)

u = 0 on ∂Ω, (5.2)

where δku = {Dαu : |α| ≤ k}.
One of the common approaches to the weak solvability of the problem
(5.1)-(5.2) is based on the Browder theorem and assumes that the following
Leray-Lions Conditions are satisfied.

O. Kovacik and J. Rakosnik. On the spaces Lp(x) and W1,p(x). Czechoslovak
Math J., 41(116) : 592-618, 1991.
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Applications to PDEs

J. Leray and J. L. Lions. Quelques résultats de Visik sur les problèmes
elliptiques non linéaires par les méthodes de Minty-Browder. Bulletin de la
S. M. F., tome 93 (1965), p. 97-107.

|aα(x, ξ)| ≤ g(x) + c
∑
|α|≤k

|ξα|p−1 growth conditions, (5.3)

with g ∈ Lp′(Ω) and∑
aα(x, ξ)ξα ≥ c1

∑
|α|≤k

|ξα|p − c2 coercivity conditions (5.4)

with some p ∈ (1,∞).
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Applications to PDEs

It is then natural to look for a weak solution in the Sobolev space W1,p(.)
0 (Ω).

Consider a more general situation, when Ω = Ω1 ∪Ω2, 1 < p1 < p2 < ∞, and the
conditions (5.3)-(5.4) are satisfied with pi on Ωi. If we simply use the above
scheme to find the weak solution of (5.1)-(5.2) in Wk,p

0 (Ω), we see that the
validity of conditions (5.3) and (5.4) requires p = min {p1, p2} and
p = max {p1, p2} respectively. Therefore, the common way is that p has to vary, a
function of x ∈ Ω.
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2- Physical motivation

The interest of the study of Lebesgue and Sobolev spaces with variable
exponent lies on the fact that most materials can be modelled with sufficient
accuracy using classical Lebesgue and Sobolev spaces Lp and W1,p, where p is
a fixed constant, but for some materials with inhomogeneities, for instance
electrorheological fluids (sometimes referred to as “smart fluids"), this is not
adequate, but rather the exponent p should be able to vary. These fluids are
smart materials which are concentrated suspensions of polarizable particles in
a non-conducting dielectric liquid. By applying an electric field, the viscosity can
be changed by a factor up to 105, and the fluid can be transformed from liquid
state into semi-solid stats within milliseconds. The process is reversible. As
example of electrorheological fluids, we have alumina Al2O3 particles.
Note also that by replacing p by p(x) on the models used to debluring and
denoising images, one gets a powerful and faster denoising process.
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We consider the following nonlinear boundary value problem :

−div(a(x,∇u)) = f (x,u) in Ω (5.5)

u = 0 on ∂Ω, (5.6)

where Ω ⊂ RN, N ≥ 3 is a bounded domain with smooth boundary.
The existence and uniqueness of weak and entropy solutions of problem
(5.5)-(5.6) was done by Ouaro and Traoré.

S. Ouaro and S. Traoré. Weak and entropy solutions to nonlinear elliptic
problems with variable exponent. J. Convex Anal. 16 (2009), N°2, 523-541.
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Assumptions on the data

(H1) :f∈ L∞(Ω) ;
(H2) :f∈ L1(Ω) ;
(H3) :f is a Carathéodory function that is fΩ× R → R sucht that f (., t) is
measurable and f (x, .) is continuous.
(H4) :p(.) : Ω → R is a measurable function such that 1 < p− ≤ p+ < ∞.
(H5) :a(x,ξ) : Ω× RN → RN is the continuous derivative with respect to ξ of the
mapping A : Ω× RN → R i.e. a(x, ξ) = ∇ξA(x, ξ) such that :
a) A(x, 0) = 0, for a.e.x ∈ Ω
b) There exists C1>0 such that

|a(x, ξ)| ≤ C1(j(x) + |ξ|p(x)−1),

for a.e.x ∈ Ω and for every ξ ∈ RN, where j is a nonnegative function in Lp′(.)(Ω).
c) (a(x, ξ)− a(x, η)).(ξ − η) > 0, for a.e.x ∈ Ω and for every ξ ∈ RN with ξ ̸= η.
d) |ξ|p(x) ≤ a(x, ξ).ξ ≤ p(x)A(x, ξ), for a.e.x ∈ Ω and for every ξ ∈ RN.
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As examples of models with respect to above assumptions, we can give the
following :
(i) Set A(x, ξ) = ( 1

p(x) )|ξ|
p(x), a(x, ξ) = |ξ|p(x)−2ξ, where p(x) ≥ 2. Then we get the

p(x)-Laplace operator div(|∇u|p(x)−2∇u).
(ii) Set A(x, ξ) = ( 1

p(x) )((1 + |ξ|2)
p(x)

2 − 1), a(x, ξ) = (1 + |ξ|2)
p(x)−2

2 ξ, where
p(x) ≥ 2. Then we obtain the generalized mean curvature operator
div((1 + |∇u|2)

p(x)−2
2 ∇u).
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Weak energy solution for f ∈ L∞(Ω)

Definition 24

A weak solution of problem (5.5)-(5.6) is a function u ∈ W1,1
0 (Ω) such that

a(.,∇u) ∈ (L1
loc(Ω))

N and
∫
Ω

a(x,∇u).∇φdx =
∫
Ω

f (x)φdx, for all φ ∈ C∞
0 (Ω).

A weak energy solution is a weak solution such that u ∈ W1,p(.)
0 (Ω).

Theorem 25

Assume (H1), (H4), (H5). Then ; there exists a unique weak energy solution of
(5.5)− (5.6).
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Proof of Theorem 25 We define the energy functional

I(u) =
∫
Ω

A(x,∇u)dx −
∫
Ω

fudx.

We prove that I ∈ C1(W1,p(.)
0 (Ω),R), bounded from below, coercive and weakly

lower semi-continuous with the derivative given by

⟨I′(u), φ⟩ =
∫
Ω

a(x,∇u).∇φdx −
∫
Ω

fφdx,

for all u, φ ∈ W1,p(.)
0 (Ω).

We also use assumption (H)5 and the Poincaré inequality since
W1,p(.)

0 (Ω) ↪→ W1,p−

0 (Ω), to prove the uniqueness of weak energy solution.
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Weak solutions for f (x,u)

In this part, we study problem (5.5)-(5.6) for a Carathéodory function f .
Let

F(x, t) =
∫ t

0
f (x, s)ds

We assume that :
(H6) : There exists C1 > 0 such that |f (x, t)| ≤ c1 + c2|t|β−1, where 1 ≤ β < p−.
We have the following result.

Theorem 26

Under assumptions (H3), (H4), (H5) and (H6), the problem (5.5)-(5.6) has at
least one weak energy solution.
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Proof of theorem 26

We define the functional

I(u) =
∫
Ω

A(x,∇u)dx −
∫
Ω

F(x,u)dx.

We prove that I is bounded from below, coercive, lower semi-continuous and in
C1(W1,p(.)

0 (Ω),R), to get the result of at least one weak energy solution of
problem (5.5)-(5.6).
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Assume now that F+(x, t) =
∫ t

0 f+(x, s)ds, is such that there exists C1 > 0,
C2 > 0 such that
(H7) : |f+(x, t)| ≤ C1 + C2|t|β−1, where 1 ≤ β < p−.
We have the following result.

Theorem 27

Under assumptions (H3), (H4), (H5) and (H7), the problem (5.5)-(5.6) has at
least one weak energy solution.

Proof. As f = f+ − f−, then I(u) ≥
∫
Ω

A(x,∇u)dx −
∫
Ω

F+(x,u)dx. Therefore, as
in the proof of theorem above, the result follows.
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There is no uniqueness of weak solution of problem (5.5)-(5.6) when the right
hand side term is Carathéodory. Indeed the function

f (x, t) = λ(tγ−1 − tβ−1), (5.7)

where 1 < β < α < p− and λ > 0 verify (H6) and (H7). Mihailescu and
Radulescu proved that with (5.7), the problem (5.5)-(5.6) has at least two
distinct non negative non trivial weak energy solutions.

M. Mihailescu, V. Radulescu. A multiplicity result for a nonlinear degenerate
problem arising in the theory of electrorheological fluids. Proc. R. Soc. 462
(2006), 2625-2641.
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Entropy solution for f ∈ L1(Ω)

As the right-hand side of problem (5.5)-(5.6) belongs in L1(Ω), the suitable
notion of solution for the study of the problem is the notion of entropy solution.
See following reference.

Ph. Benilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre, J. L. Vazquez.
An L1-Theory of existence and uniqueness of solutions of nonlinear elliptic
equations, Ann. Sc. Norm. Super. Pisa, Cl. Sci, IV. Ser. 22 (1995), 241-273.

Definition 28
A measurable function u is an entropy solution of problem (5.5)-(5.6) if, for every
t > 0, Tt(u) ∈ W1,p(.)

0 (Ω) and∫
Ω

a(x,∇u).∇Tt(u − φ)dx ≤
∫
Ω

f (x)Tt(u − φ)dx,

for all φ ∈ W1,p(.)
0 (Ω) ∩ L∞(Ω).

The troncation function Tt is defined by Tt(s) := max {−t,min(t, s)}.
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Theorem 29

Assume (H2), (H4), (H5). Then there exists a unique entropy solution u to
problem (5.5)-(5.6).

Proof 1- Uniqueness. By monotonicity assumptions, Sobolev embedding
W1,p(.)

0 (Ω) ↪→ Wp−

0 (Ω) and Poincar é inequality in constant exponent, we get that
if u and v are entropy solutions of problem (5.5)-(5.6),∫

Ω

|Tt(u − v)|p
−

dx ≤
∫
Ω

|∇(Tt(u − v))|p
−

dx = 0,

for all t > 0. Hence u = v a.e. in Ω.
2- Existence. Let (fn)n∈N be a sequence of bounded functions, strongly
converging to f ∈ L1(Ω) and such that ∥fn∥1 ≤ ∥f∥1, for all n ∈ N. As fn ∈ L∞(Ω)
then problem (5.5)-(5.6) with n as a unique sequence of weak energy solution
(un)n∈N.
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(1) un → u in measure and a.e. in Ω.
(2) ∇un converges in measure to the weak gradient of u.
(3) a(x,∇un) converges to a(x,∇u) strongly in L1(Ω)N.
After passing to the limit as n → ∞ in∫

Ω

a(x,∇un).∇(Tt(un − φ))dx =

∫
Ω

fTt(un − φ)dx,

by using Lebesgue’s theorem and Fatou’s lemma, it follows that∫
Ω

a(x,∇u).∇(Tt(u − φ))dx ≤
∫
Ω

fTt(u − φ)dx

54 / 78



PDEs with variable exponent

Applications to PDEs

Thank You for Your Kind Attention
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